Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Braz J Biol ; 82: e267633, 2023.
Article in English | MEDLINE | ID: covidwho-2248632

ABSTRACT

Carnitine is a conditionally necessary vitamin that aids in energy creation and fatty acid metabolism. Its bioavailability is higher in vegetarians than in meat-eaters. Deficits in carnitine transporters occur because of genetic mutations or in conjunction with other illnesses. Carnitine shortage can arise in health issues and diseases-including hypoglycaemia, heart disease, starvation, cirrhosis, and ageing-because of abnormalities in carnitine control. The physiologically active form of L-carnitine supports immunological function in diabetic patients. Carnitine has been demonstrated to be effective in the treatment of Alzheimer's disease, several painful neuropathies, and other conditions. It has been used as a dietary supplement for the treatment of heart disease, and it also aids in the treatment of obesity and reduces blood glucose levels. Therefore, L-carnitine shows the potential to eliminate the influences of fatigue in COVID-19, and its consumption is recommended in future clinical trials to estimate its efficacy and safety. This review focused on carnitine and its effect on tissues, covering the biosynthesis, metabolism, bioavailability, biological actions, and its effects on various body systems and COVID-19.


Subject(s)
COVID-19 , Heart Diseases , Humans , Carnitine/pharmacology , Carnitine/therapeutic use , Dietary Supplements , Liver Cirrhosis , Heart Diseases/drug therapy
2.
Clin Appl Thromb Hemost ; 28: 10760296221141449, 2022.
Article in English | MEDLINE | ID: covidwho-2162206

ABSTRACT

OBJECTIVE: Our objective in this study was to determine the predictive factors of thromboembolic complications in patients with previous heart disease and severe covid-19 infection and the impact of previous use of antithrombotics on protection against these complications. METHODS: We conducted a single-center retrospective study of 158 patients with heart disease admitted to an intensive care unit for severe SARS-COV-2 infection. In order to determine the predictive factors, we used logistic regression analysis. RESULTS: Out of 158 patients, 22 were complicated by a thrombo-embolic event (13.9%), mean age of our population 64.03 (SD = 15.27), with a male predominance of 98 (62%). For the predictive factors of thromboembolic complications, and after multivariate analysis, we find the short duration of hospitalization (OR = 0.92; 95%CI (0.863-0.983), P = .014, previous use of antithrombotic drugs ((OR = 0.288, 95%CI (0.091-0.911), P = .034 for antiplatelet agents) and (OR = 0.322, 95% CI (0, 131-0.851), P = .021) for anticoagulants) as protective factors, and admission thrombocytosis as a risk factor (OR = 4.58, 95%CI (1.2-10.627), P = .021). D-dimer was not detected as a risk factor, and this can be explained by the characteristics of our population. Although prior use of antithrombotic drugs protects against thromboembolic complications during severe infection, there was no benefit in mortality. CONCLUSION: Prior use of antithrombotic drugs is a protective factor against thromboembolic complications in patients with a history of heart disease but without effect on mortality.


Subject(s)
COVID-19 , Cardiovascular Diseases , Heart Diseases , Thromboembolism , Humans , Male , Female , Fibrinolytic Agents/therapeutic use , COVID-19/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/complications , Retrospective Studies , SARS-CoV-2 , Thromboembolism/drug therapy , Thromboembolism/etiology , Thromboembolism/prevention & control , Anticoagulants , Heart Diseases/drug therapy
3.
Ther Adv Cardiovasc Dis ; 16: 17539447221137170, 2022.
Article in English | MEDLINE | ID: covidwho-2139019

ABSTRACT

BACKGROUND: Management of high blood pressure (BP) typically requires adherence to medication regimes. However, it is known that the COVID-19 pandemic both interrupted access to some routine prescriptions and changed some patient health behaviours. AIM: This study, therefore, retrospectively investigated prescription reimbursement of cardiovascular (CVD) medicines as a proxy measure for patient adherence and access to medicines during the pandemic. METHODS: A cohort study of all primary care patients in England prescribed CVD medicines. The exposure was to the global pandemic. Prescriptions were compared before and after the pandemic's onset. Statistical variation was the outcome of interest. RESULTS: Descriptive statistics show changes to monthly prescriptions, with wide confidence intervals indicating varying underlying practice. Analysis of variance reveals statistically significant differences for bendroflumethiazide, potassium-sparing diuretics, nicorandil, ezetimibe, ivabradine, ranolazine, colesevelam and midodrine. After the pandemic began (March-October 2020), negative parameters are observed for ACE inhibitors, beta-blockers, calcium channel blockers, statins, antiplatelet, antithrombotics, ARBs, loop diuretics, doxazosin, bendroflumethiazide, nitrates and indapamide, indicating decelerating monthly prescription items (statistically significant declines of calcium channel blockers, antithrombotic, adrenoreceptor blockers and diuretics) of CVD medicines within the general population. Many data points are not statistically significant, but fluctuations remain clinically important for the large population of patients taking these medications. CONCLUSION: A concerning decline in uptake of CVD therapies for chronic heart disease was observed. Accessible screening and treatment alongside financial relief on prescription levies are needed. A video abstract is (4 min 51 s) available: https://bit.ly/39gvEHi.


Subject(s)
COVID-19 , Cardiovascular Agents , Cardiovascular Diseases , Heart Diseases , Humans , Pandemics , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bendroflumethiazide , Retrospective Studies , Cohort Studies , Angiotensin Receptor Antagonists , Cardiovascular Agents/adverse effects , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Heart Diseases/drug therapy , Diuretics/therapeutic use , Drug Prescriptions
4.
Biomed Pharmacother ; 146: 112518, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1562447

ABSTRACT

SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5ß1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.


Subject(s)
COVID-19/metabolism , Heart Diseases/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/metabolism , Heart Diseases/drug therapy , Heart Diseases/epidemiology , Humans , Myocytes, Cardiac/drug effects , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
7.
Cardiovasc Diabetol ; 20(1): 176, 2021 09 04.
Article in English | MEDLINE | ID: covidwho-1388767

ABSTRACT

BACKGROUND: It remains uncertain if prior use of oral anticoagulants (OACs) in COVID-19 outpatients with multimorbidity impacts prognosis, especially if cardiometabolic diseases are present. Clinical outcomes 30-days after COVID-19 diagnosis were compared between outpatients with cardiometabolic disease receiving vitamin K antagonist (VKA) or direct-acting OAC (DOAC) therapy at time of COVID-19 diagnosis. METHODS: A study was conducted using TriNetX, a global federated health research network. Adult outpatients with cardiometabolic disease (i.e. diabetes mellitus and any disease of the circulatory system) treated with VKAs or DOACs at time of COVID-19 diagnosis between 20-Jan-2020 and 15-Feb-2021 were included. Propensity score matching (PSM) was used to balance cohorts receiving VKAs and DOACs. The primary outcomes were all-cause mortality, intensive care unit (ICU) admission/mechanical ventilation (MV) necessity, intracranial haemorrhage (ICH)/gastrointestinal bleeding, and the composite of any arterial or venous thrombotic event(s) at 30-days after COVID-19 diagnosis. RESULTS: 2275 patients were included. After PSM, 1270 patients remained in the study (635 on VKAs; 635 on DOACs). VKA-treated patients had similar risks and 30-day event-free survival than patients on DOACs regarding all-cause mortality, ICU admission/MV necessity, and ICH/gastrointestinal bleeding. The risk of any arterial or venous thrombotic event was 43% higher in the VKA cohort (hazard ratio 1.43, 95% confidence interval 1.03-1.98; Log-Rank test p = 0.029). CONCLUSION: In COVID-19 outpatients with cardiometabolic diseases, prior use of DOAC therapy compared to VKA therapy at the time of COVID-19 diagnosis demonstrated lower risk of arterial or venous thrombotic outcomes, without increasing the risk of bleeding.


Subject(s)
Ambulatory Care/methods , Anticoagulants/administration & dosage , COVID-19 Drug Treatment , Heart Diseases/drug therapy , Metabolic Diseases/drug therapy , Vitamin K/antagonists & inhibitors , Administration, Oral , Aged , Aged, 80 and over , Anticoagulants/adverse effects , COVID-19/diagnosis , COVID-19/mortality , Factor Xa Inhibitors/administration & dosage , Female , Follow-Up Studies , Heart Diseases/diagnosis , Heart Diseases/mortality , Hemorrhage/chemically induced , Hemorrhage/mortality , Humans , Intensive Care Units/trends , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/mortality , Middle Aged , Mortality/trends , Treatment Outcome
8.
Cardiovasc Toxicol ; 21(10): 781-789, 2021 10.
Article in English | MEDLINE | ID: covidwho-1306730

ABSTRACT

Since the onset of the global COVID-19 pandemic, there has been much discussion about the advantages and disadvantages of ongoing chronic drug therapies in SARS-CoV-2-positive patients. These discussions include also statins treatment. The statins are among the most widely used drugs in the global population. Statins aim to lower cholesterol, which is essential for many biological processes but can lead to heart disease if levels are too high; however, also the pleiotropic effects of statins are well known. So could the anti-inflammatory or the potential antiviral effects of statins be helpful in avoiding extreme inflammation and severity in COVID-19? To date, there are conflicting opinions on the effects of statins in the course of COVID-19 infection. The aim of this article is to describe the molecular and pharmacological basis of the pleiotropic effects of statins that could be more involved in the fight against COVID-19 infection and to investigate the current epidemiological evidence in the literature on the current and important topic.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Heart Diseases/drug therapy , Heart/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Antiviral Agents/adverse effects , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Heart/physiopathology , Heart/virology , Heart Diseases/epidemiology , Heart Diseases/physiopathology , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , SARS-CoV-2/pathogenicity , Treatment Outcome
9.
Pan Afr Med J ; 38: 125, 2021.
Article in English | MEDLINE | ID: covidwho-1207919

ABSTRACT

In children, coronavirus disease 2019 infection is rarely symptomatic. Severe forms with respiratory distress are rare, thromboembolic complications are exceptional. We report a rare case of a 14 years old girl with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who was admitted to the hospital for bilateral pulmonary embolism with intracardiac thrombus. The girl progressed well on anticoagulation.


Subject(s)
COVID-19/complications , Pulmonary Embolism/virology , Thrombosis/virology , Acute Disease , Adolescent , Anticoagulants/administration & dosage , Female , Heart Diseases/drug therapy , Heart Diseases/etiology , Humans , Pulmonary Embolism/drug therapy , Thrombosis/drug therapy
10.
Cardiol J ; 28(3): 360-368, 2021.
Article in English | MEDLINE | ID: covidwho-1178544

ABSTRACT

BACKGROUND: Cardiovascular risk factors and usage of cardiovascular medication are prevalent among coronavirus disease 2019 (COVID-19) patients. Little is known about the cardiovascular implications of COVID-19. The goal herein, was to evaluate the prognostic impact of having heart disease (HD) and taking cardiovascular medications in a population diagnosed of COVID-19 who required hospitalization. Also, we studied the development of cardiovascular events during hospitalization. METHODS: Consecutive patients with definitive diagnosis of COVID-19 made by a positive real time- -polymerase chain reaction of nasopharyngeal swabs who were admitted to the hospital from March 15 to April 14 were included in a retrospective registry. The association of HD with mortality and with mortality or respiratory failure were the primary and secondary objectives, respectively. RESULTS: A total of 859 patients were included in the present analysis. Cardiovascular risk factors were related to death, particularly diabetes mellitus (hazard ratio in the multivariate analysis: 1.810 [1.159- -2.827], p = 0.009). A total of 113 (13.1%) patients had HD. The presence of HD identified a group of patients with higher mortality (35.4% vs. 18.2%, p < 0.001) but HD was not independently related to prognosis; renin-angiotensin-aldosterone system inhibitors, calcium channel blockers, diuretics and beta-blockers did not worsen prognosis. Statins were independently associated with decreased mortality (0.551 [0.329-0.921], p = 0.023). Cardiovascular events during hospitalization identified a group of patients with poor outcome (mortality 31.8% vs. 19.3% without cardiovascular events, p = 0.007). CONCLUSIONS: The presence of HD is related to higher mortality. Cardiovascular medications taken before admission are not harmful, statins being protective. The development of cardiovascular events during the course of the disease is related to poor outcome.


Subject(s)
COVID-19/epidemiology , Cardiovascular Agents/therapeutic use , Heart Diseases/epidemiology , Pandemics , Aged , Comorbidity , Female , Heart Diseases/drug therapy , Humans , Male , Prognosis , Retrospective Studies , SARS-CoV-2
11.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1135274

ABSTRACT

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Subject(s)
COVID-19/complications , Cardiotonic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Heart Diseases/drug therapy , Quinazolinones/therapeutic use , Transcription Factors/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , Cytokines/metabolism , Female , Heart Diseases/etiology , Human Embryonic Stem Cells , Humans , Inflammation/complications , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , Transcription Factors/metabolism , COVID-19 Drug Treatment
13.
BMJ Case Rep ; 14(2)2021 Feb 23.
Article in English | MEDLINE | ID: covidwho-1099755

ABSTRACT

We report a case of cardiac injury in a 46-year-old man affected by COVID-19. The patient presented with shortness of breath and fever. ECG revealed sinus tachycardia with ventricular extrasystoles and T-wave inversion in anterior leads. Troponin T and N-terminal pro B-type natriuretic peptide were elevated. Transthoracic echocardiography showed severely reduced systolic function with an estimated left ventricle ejection fraction of 30%. A nasopharingeal swab was positive for SARS-CoV-2. On day 6, 11 days after onset of symptoms, the patient deteriorated clinically with new chest pain and type 1 respiratory failure. Treatment with colchicine 0.5 mg 8-hourly resulted in rapid clinical resolution. This case report highlights how cardiac injury can dominate the clinical picture in COVID-19 infection. The role of colchicine therapy should be further studied to determine its usefulness in reducing myocardial and possibly lung parenchymal inflammatory responses.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Colchicine/therapeutic use , Heart Diseases/drug therapy , Heart Diseases/virology , Chest Pain/virology , Echocardiography , Humans , Male , Middle Aged , Myocardium/pathology , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Systole , Troponin T/blood
14.
Discov Med ; 30(161): 155-161, 2020.
Article in English | MEDLINE | ID: covidwho-1085799

ABSTRACT

SARS-CoV-2 is a novel coronavirus responsible for the global coronavirus 2019 pandemic (COVID-19), which started in early 2020 and is still ongoing today. COVID-19 has caused more than 1 million deaths worldwide and about 50 million infected. COVID-19 not only causes lung injury, but there may also be an involvement of other organs, including the cardiovascular system. SARS-CoV-2 penetrates host cells through the angiotensin 2 conversion enzyme (ACE-2). ACE-2 is expressed in the lungs, heart, testicles, liver, gastrointestinal tract, etc. Several studies have found that a sizeable percentage of patients with severe COVID-19 also have cardiac lesions, including myocardial fibrosis, edema, and pericarditis. Pathological remodeling of the extracellular matrix caused by SARS-CoV-2 leads to fibrotic lesions of myocardial tissue. These fibrotic lesions can cause cardiac dysfunction, reducing the ejection fraction caused by the presence of stiffened myocardial matrix and leading to heart failure, or cause an alteration in electrical conductance by creating cardiac arrhythmias. These cardiac dysfunctions can be fatal if left untreated and managed. It is therefore essential to identify cardiac involvement early in order to act with appropriate treatments to preserve the integrity of the heart. In this review, we describe what is known about cardiac damage from COVID-19, including the scientific rationale for effective therapeutic solutions to combat cardiac injury, and reduce or avoid cardiac damage from COVID-19.


Subject(s)
COVID-19/complications , COVID-19/pathology , Heart Diseases/drug therapy , Heart Diseases/etiology , Myocardium/pathology , SARS-CoV-2/physiology , COVID-19/virology , Humans , Models, Biological , Risk Factors
15.
Acta Diabetol ; 58(7): 831-843, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1083870

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a pandemic. The cellular receptor for SARS-CoV-2 entry is the angiotensin-converting enzyme 2, a membrane-bound homolog of angiotensin-converting enzyme. Henceforth, this has brought the attention of the scientific community to study the interaction between COVID-19 and the renin-angiotensin system (RAS), as well as RAS inhibitors. However, these inhibitors are commonly used to treat hypertension, chronic kidney disorder, and diabetes. Obesity is a known risk factor for heart disease, diabetes, and hypertension, whereas diabetes and hypertension may be indirectly related to each other through the effects of obesity. Furthermore, people with hypertension, obesity, diabetes, and other related complications like cardiovascular and kidney diseases have a higher risk of severe COVID-19 infection than the general population and usually exhibit poor prognosis. This severity could be due to systemic inflammation and compromised immune response and RAS associated with these comorbid conditions. Therefore, there is an urgent need to develop evidence-based treatment methods that do not affect the severity of COVID-19 infection and effectively manage these chronic diseases in people with COVID-19.


Subject(s)
COVID-19/mortality , Diabetes Mellitus/epidemiology , Hypertension/epidemiology , Obesity/epidemiology , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , COVID-19/complications , COVID-19/epidemiology , Comorbidity , Diabetes Complications/drug therapy , Diabetes Complications/epidemiology , Diabetes Complications/mortality , Diabetes Mellitus/drug therapy , Disease Progression , Heart Diseases/complications , Heart Diseases/drug therapy , Heart Diseases/epidemiology , Humans , Hypertension/complications , Hypertension/drug therapy , Obesity/complications , Pandemics , Peptidyl-Dipeptidase A/physiology , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Factors , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
16.
Cardiovasc Res ; 116(14): 2207-2215, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1048209

ABSTRACT

AIMS: Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as a global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality. It is unclear whether cardiac injury is caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here, we investigate whether cardiomyocytes are permissive for SARS-CoV-2 infection. METHODS AND RESULTS: Two strains of SARS-CoV-2 infected human induced pluripotent stem cell-derived cardiomyocytes as demonstrated by detection of intracellular double-stranded viral RNA and viral spike glycoprotein expression. Increasing concentrations of viral RNA are detected in supernatants of infected cardiomyocytes, which induced infections in Caco-2 cell lines, documenting productive infections. SARS-CoV-2 infection and induced cytotoxic and proapoptotic effects associated with it abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signalling, apoptosis, and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a 3D cardiosphere tissue model. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. Coronavirus particles were further observed in cardiomyocytes of a patient with coronavirus disease 2019. Infection of induced pluripotent stem cell-derived cardiomyocytes was dependent on cathepsins and angiotensin-converting enzyme 2, and was blocked by remdesivir. CONCLUSION: This study demonstrates that SARS-CoV-2 infects cardiomyocytes in vitro in an angiotensin-converting enzyme 2- and cathepsin-dependent manner. SARS-CoV-2 infection of cardiomyocytes is inhibited by the antiviral drug remdesivir.


Subject(s)
Apoptosis , COVID-19/virology , Heart Diseases/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Apoptosis/drug effects , COVID-19/metabolism , COVID-19/pathology , Caco-2 Cells , Cathepsins/metabolism , Heart Diseases/drug therapy , Heart Diseases/metabolism , Heart Diseases/pathology , Host-Pathogen Interactions , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , SARS-CoV-2/drug effects , Signal Transduction , COVID-19 Drug Treatment
17.
ACS Appl Mater Interfaces ; 13(1): 312-323, 2021 Jan 13.
Article in English | MEDLINE | ID: covidwho-997781

ABSTRACT

In this study, we present a modulated synthesis nanocrystalline defective UiO-66 metal-organic framework as a potential chloroquine diphosphate (CQ) delivery system. Increasing the concentration of hydrochloric acid during the modulated synthesis resulted in a considerable increase of pore volume, which enhanced the CQ loading in CQ@UiO-66 composites. Drug release tests for CQ@UiO-66 composites have confirmed prolonged CQ release in comparison with pure CQ. In vivo tests on a Danio reiro model organism have revealed that CQ released from CQ@UiO-66 25% showed lower toxicity and fewer cardiotoxic effects manifested by cardiac malformations and arrhythmia in comparison to analogous doses of CQ. Cytotoxicity tests proved that the CQ loaded on the defective UiO-66 cargo resulted in increased viability of cardiac cells (H9C2) as compared to incubation with pure CQ. The experimental results presented here may be a step forward in the context of reducing the cardiotoxicity CQ.


Subject(s)
Chloroquine/analogs & derivatives , Heart Diseases/drug therapy , Metal-Organic Frameworks/pharmacology , Nanoparticles/chemistry , Animals , Chloroquine/adverse effects , Chloroquine/chemistry , Chloroquine/pharmacology , Disease Models, Animal , Drug Delivery Systems/adverse effects , Drug Liberation/drug effects , HEK293 Cells , Heart Diseases/chemically induced , Heart Diseases/pathology , Humans , Hydrochloric Acid/pharmacology , Metal-Organic Frameworks/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Zebrafish/genetics
18.
Cardiovasc Drugs Ther ; 35(3): 427-440, 2021 06.
Article in English | MEDLINE | ID: covidwho-754431

ABSTRACT

Lopinavir-ritonavir combination is being used for the treatment of SARS-CoV-2 infection. A low dose of ritonavir is added to other protease inhibitors to take advantage of potent inhibition of cytochrome (CYP) P450 3A4, thereby significantly increasing the plasma concentration of coadministered lopinavir. Ritonavir also inhibits CYP2D6 and induces CYP2B6, CYP2C19, CYP2C9, and CYP1A2. This potent, time-dependent interference of major hepatic drug-metabolizing enzymes by ritonavir leads to several clinically important drug-drug interactions. A number of patients presenting with acute coronary syndrome and acute heart failure may have SARS-CoV-2 infection simultaneously. Lopinavir-ritonavir is added to their prescription of multiple cardiac medications leading to potential drug-drug interactions. Many cardiology, pulmonology, and intensivist physicians have never been exposed to clinical scenarios requiring co-prescription of cardiac and antiviral therapies. Therefore, it is essential to enumerate these drug-drug interactions, to avoid any serious drug toxicity, to consider alternate and safer drugs, and to ensure better patient care.


Subject(s)
COVID-19 Drug Treatment , Heart Diseases/drug therapy , Lopinavir/administration & dosage , Ritonavir/administration & dosage , SARS-CoV-2 , Anticoagulants/therapeutic use , Drug Interactions , Drug Therapy, Combination , Humans , Hypolipidemic Agents/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use
19.
Diabetes Res Clin Pract ; 167: 108349, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-714955

ABSTRACT

AIM: While there are rampant deaths reported worldwide due to novel corona virus (COVID-19) on one side, hypertension, diabetes and renal failure are emerging comorbidities with mortality risk due to respiratory failure on the other side. The link of these morbidities with renin angiotensin system (RAS) and angiotensin converting enzyme-2 (ACE2) as the site of the multiplication of COVID-19 has widely been accepted. The objective of this research report was to delineate the clinical characteristics with COVID-19 infection with RAS and to consider its significance not just for the search of novel antiviral drugs, but for the management and prevention of death of patients with COVID-19. METHODS: It was a retrospective case series analysis of demographic and clinical data with associated comorbidities of 206 deaths reported in India up to 10th April 2020. The data were available from the official release from Ministry of Health and Family welfare, Government of India. This was followed by a literature search to correlate the available evidence for their possible relationship with RAS. RESULTS: The demographic data were consistent with those reported from other countries. The death (53.4%) was more common in patients with age above 60 years and men (69.3%) were more susceptible as compared to women (30.68%).We found that 50.5% of the deceased patients had pre-existing comorbidities. Diabetes and hypertension were the major comorbidities in 27.8% and 22.1% of the deceased cases respectively. Although respiratory and cardiac problems were prevalent at the time of death, the pre-existing pulmonary disease was comparatively less prevalent. Only 13.6% of the deceased were having pre-existing respiratory problems and 6.2% had cardiac ailments. We could correlate the reports that RAS plays a significant role in the prognosis of the disease. CONCLUSIONS: Patients with cardiovascular diseases, diabetes mellitus and hypertension are at greater risk for developing COVID-19 infection. There may be massive derangement of the entire RAS after the attack of COVID-19 and hence, patients with these pre-existing comorbidities and on ACE inhibitors or angiotensin receptor blockers should be monitored carefully considering the role of RAS in the prognosis of COVID-19 infections.


Subject(s)
Coronavirus Infections/mortality , Diabetes Mellitus/epidemiology , Hypertension/epidemiology , Pneumonia, Viral/mortality , Renin-Angiotensin System , Adult , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/metabolism , Comorbidity , Coronavirus Infections/metabolism , Diabetes Mellitus/metabolism , Female , Heart Diseases/drug therapy , Heart Diseases/epidemiology , Humans , Hypertension/drug therapy , Hypertension/metabolism , India/epidemiology , Male , Middle Aged , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/metabolism , Respiratory Tract Diseases/epidemiology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL